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INTRODUCTION

Marine coastal zone ecosystems include intertidal
and nearshore marine systems that are influenced by
both terrestrial and marine processes. These ecosys-
tems are often particularly sensitive to anthropogenic
changes in upstream terrestrial systems and to direct
coastal impacts. They include a wide range of habitat
types, such as the rocky intertidal, salt marshes, sandy
beaches, mangrove forests, soft-bottom bays, coral and
rocky reefs, seagrass beds, and kelp forests. They gen-
erally occupy a narrow band from the edge of terres-
trial systems into the marine realm, and, while they
may occasionally influence upstream terrestrial sys-
tems, terrestrial impacts on marine coastal zone sys-
tems are generally much stronger. Despite the asym-
metry of impacts, coastal zone ecosystems provide a

suite of essential ecosystem functions to both terrestrial
and marine systems (Granek et al. 2010). For example,
coastal marine ecosystems serve as nursery habitats for
many marine species, filter terrestrial inputs to marine
systems, and can accrete new land as well as buffering
land from wave impacts (Wahle & Steneck 1991,
Gillanders et al. 2003, Alongi 2008, Cochard et al.
2008, Feagin et al. 2010). Coastal areas also provide a
range of other direct benefits to humans, through fish-
eries, as sources of raw materials, through storm pro-
tection, and as areas for recreation (e.g. Koch et al.
2009).

However, because nearly 40% of human popula-
tions live on or near the coasts (Millennium Ecosys-
tem Assessment 2005), these ecosystems often face a
range of significant and growing anthropogenic threats
(Table 1). Many of these threats are compounded by

© Inter-Research 2011 · www.int-res.com*Email: benjamin.ruttenberg@noaa.gov
**Both authors contributed equally to this paper

Bridging the marine–terrestrial disconnect to improve
marine coastal zone science and management

Benjamin I. Ruttenberg1,*,**, Elise F. Granek2,**

1National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, Florida 33149, USA
2Environmental Science and Management, Portland State University, PO Box 751, Portland, Oregon 97207

ABSTRACT: Coastal zone ecosystems sit between larger terrestrial and marine environments and,
therefore, are strongly affected by processes occurring in both systems. Marine coastal zone systems
provide a range of benefits to humans, and yet many have been significantly degraded as a result of
direct and indirect human impacts. Management efforts have been hampered by disconnects both
between management and scientific research and across linked marine–terrestrial systems. Manage-
ment jurisdictions often start or end at the shoreline, and multiple agencies at different levels of gov-
ernment often have overlapping or conflicting management goals or priorities, or suffer from a lack of
knowledge or interest. Scientists also often fail to consider connections among linked marine–terres-
trial systems, and communication among agencies, among scientists in different disciplines, and
between scientists and managers is often inadequate. However, despite the institutional and scien-
tific challenges inherent in improving coastal zone management, there are examples of increased
coordination and cooperation among different organizations. We discuss a number of examples—
including where the marine–terrestrial and science–management disconnects persist and where
 better integration has led to successes in coastal zone management—and provide recommendations
to scientists and managers on how to better link their efforts in science and management across
marine and terrestrial systems.

KEY WORDS:  Nearshore ecosystem · Terrestrial runoff · Marine management · Interdisciplinary
 science · Florida Keys · California Marine Life Protection Act

Resale or republication not permitted without written consent of the publisher

Contribution to the Theme Section ‘Biodiversity, ecosystems and coastal zone management’ OPENPEN
 ACCESSCCESS



Mar Ecol Prog Ser 434: 203–212, 2011

the fact that marine coastal zone ecosystems are
tightly connected to both terrestrial and marine
realms; changes in adjacent terrestrial or marine
 systems can alter coastal processes. For example,
changes in land-use patterns can alter runoff rates,
impacting coastal systems through changes in sedi-
mentation and nutrient inputs, and changes in off-
shore fisheries can result in cascading trophic effects
in coastal zone systems (e.g. Hoffman et al. 1984,
Carpenter et al. 1998, Estes et al. 1998, Frank et al.
2005, Diaz & Rosenberg 2008, Salomon et al. 2010).

Despite the importance of, and threats to, coastal
ecosystems, coastal zone management is compli-
cated by the fact that both science and management
tend to occur within a ‘box.’ Marine biologists and
ecologists often focus on marine species, communi-
ties, and processes, whereas terrestrial biologists
and ecologists focus on parallel questions on land.
Few scientists examine the connections between
 terrestrial and marine ecosystems (but see Polis et al.
1997, Gende et al. 2002, Rabalais et al. 2009), and
evidence suggests that many ecologists—particu-
larly those working in terrestrial systems—often
ignore the literature from other realms (Raffaelli et
al. 2005, Stergiou & Browman 2005, Menge et al.
2009). As a result, we have a poorer understanding of
the effects of terrestrial or marine activities on eco-
logical processes in coastal zone ecosystems, and
there are fewer data available to assess the potential
impacts of a particular stressor or event or their
 interplay. Similarly, resource managers are usually
tasked with addressing impacts inside the bound-
aries of the areas they manage (either terrestrial or
marine) and often lack the authority or the resources
to address factors that occur outside their manage-
ment boundaries. Though some managers are re -
sponsible for a suite of ecosystems that straddle both
realms, a management area rarely includes an entire
watershed that may contribute inputs into nearshore
marine and coastal zone ecosystems. Furthermore,
managers and agencies may only have jurisdiction
over one or the other realm, and their performance
goals often end at these boundaries.

Coastal zone ecosystems face additional challenges.
First, they are downstream of terrestrial systems.
While there are examples of direct marine influences
on terrestrial systems (Polis & Hurd 1996, Dawson
1998, Gende et al. 2002), coastal marine ecosystems
are often strongly affected by changes in, and im -
pacts from, terrestrial systems, including land use,
nutrient runoff, sedimentation, and other land-based
sources of pollution (Millennium Ecosystem Assess-
ment 2005, Rabalais et al. 2009). Marine processes
rarely exert strong influences on terrestrial systems,
with the exception of unusual events such as storm
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surge or tsunami waves, and impacts from these ex -
treme events are restricted to areas close to the shore-
line. Second, most people cannot see changes occur-
ring in the sea because impacts happen below the
surface and ‘out of sight’ for the vast majority of people.
Factors such as deforestation, urbanization, and other
changes in land-use patterns and declining quality of
terrestrial ecosystems are relatively easily observed,
whereas similar changes in marine systems, including
the effects of such changes in terrestrial systems on
coastal zone systems, go unnoticed by the public.

Disparate management strategies, jurisdictions, and
research agendas, as well as the ‘out of sight’ nature of
changes to coastal marine ecosystems can lead to a
 disconnect in both understanding sources and levels
of impacts across realms and in effectively managing
coastal ecosystem processes, communities, and spe-
cies. For example, the effects of pollutant loading in
rivers has been well studied (e.g. Pereira et al. 1996,
Kidd et al. 2007), yet these waters ultimately drain into
coastal oceans. We know very little about the levels of
land-based contaminants in coastal marine organisms
and the effects on their communities and ecosystems
(but see Brown et al. 1985, Comeleo et al. 1996). This
disconnect can be severe enough to inhibit the success
of coastal zone management strategies when inputs
from terrestrial or marine ecosystems are not consid-
ered or remain unmanaged. As an example, effective
fisheries management in the Gulf of Mexico may be
insufficient to sustainably manage local populations of
shrimp, crabs, and fish as long as nutrient loading from
the Mississippi River continues to create ‘dead zones’
in nearshore waters of the Gulf (Rabalais et al. 2007,
Turner et al. 2008). Taken together, these issues make
the challenges in coastal zone management ‘wicked’
problems, in that it can be difficult to define the scope
of the problems, let alone determine if or when the
problems have been ‘solved’ (Rittel & Webber 1973,
Jentoft & Chuenpagdee 2009).

We present cases exemplifying both challenges and
successes in coastal zone science and management
and attempt to demonstrate the importance of increas-
ing efforts to bridge the marine–terrestrial and sci-
ence–management disconnects. We also discuss addi-
tional strategies that could improve our understanding
and management of coastal marine ecosystems
through better linking of terrestrial and marine ecosys-
tem practitioners.

THE DISCONNECT: SCIENCE AND
 MANAGEMENT IN THE FLORIDA KEYS

The Florida Keys barrier reef system extends >350 km
from Miami to the Dry Tortugas, 100 km west of Key

West. The Florida Keys include a wide variety of coastal
habitat types, including mangrove forests, ex tensive
seagrass and sand flats, and expansive patch reefs and
forereefs that comprise the seaward edge of the barrier
reef system, which together host rich bio diversity
(Keller & Causey 2005). There are 80 000 year-round
residents in the keys, but tourism is the primary indus-
try, with an estimated 3 million annual visitors spend-
ing around $1.2 billion annually (NOAA 2005). Recre-
ational and commercial fishing provide $500 million
and $57 million, respectively, to the local economy
(NOAA 2005).

As with many ecosystems with heavy human use, the
Florida Keys are beset by a variety of complex threats
and challenges from competing interests. Direct im -
pacts to benthic habitats, such as boat groundings,
anchor damage, and damage from fishing gear, snorkel-
ers, and divers are increasing. Boat groundings and
propellers have damaged >12 000 ha of seagrass and
>8 ha of coral reefs (NOAA 2005). Overfishing has also
dramatically altered reef fish communities, with a loss
of large predators and significant reduction of other
economically and ecologically important species (Don-
ahue et al. 2008, McClenachan 2009), and live coral
cover on reefs has declined steadily over the past 3
decades (Porter & Meier 1992, Donahue et al. 2008,
Dupont et al. 2008). Eutrophication and sedimentation
have increased, at least in part, as a result of the com-
bination of a growing human population and tourism in
the Keys and inadequate wastewater and stormwater
treatment facilities, as well as decades of change in
land-use patterns throughout mainland Florida (La -
pointe et al. 2004). Declining water quality may be the
most serious issue facing coastal zone ecosystems in
the Keys, and is thought to be at least partly responsi-
ble for continued loss of live coral, episodic seagrass
die-offs, and general decline in the quality of natural
resources (Keller & Causey 2005, but see Precht &
Miller 2007).

Addressing any of these issues would be difficult for
management agencies under ideal conditions, but the
situation in the Florida Keys is far more complicated.
Impacts originate from both marine and terrestrial
sources, and the Keys are managed by a suite of differ-
ent organizations and agencies at different levels of
government with differing and overlapping jurisdic-
tions and missions that are not always fully aligned
(Fig. 1). Spatial management in the Florida Keys is
overseen by 5 federal agencies in 2 different cabinet
departments and at least 3 state agencies, including:
the Florida Keys National Marine Sanctuary of the
National Oceanic and Atmospheric Administration
(NOAA) in the US Department of Commerce; 3 differ-
ent National Parks of the National Park Service and 4
National Wildlife Refuges of the US Fish and Wildlife
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Service, both agencies in the US Department of the
Interior; a research natural area, a no-fishing and no-
anchoring zone in Dry Tortugas National Park reautho-
rized every 5 yr by a Board of Trustees comprised of
Florida’s Governor and Cabinet; and 6 state parks,
administered by the De partment of Environmental
Protection of the State of Florida. Fishery regulations
in state waters (within 3 miles of land in the Atlantic,
9 miles in the Gulf of Mexico) are set by the Florida
Fish and Wildlife Conservation Commission (FWC),
whereas fishery regulations in federal waters are set
by the South Atlantic Fishery Management Council in
the Atlantic, and the Gulf of Mexico Fishery Manage-
ment Council on the Gulf of Mexico and Dry Tortugas.
Federal fishing regulations are administered by the
National Marine Fisheries Service of NOAA, and gen-
erally match those of the state, but they do not always
coincide (e.g. FWC 2010, SAFMC 2010). There are a
range of user groups and stakeholders that influence
public policy and management priorities in the Keys;
these include year-round and seasonal residents,
tourists, the tourism industry, recreational and com-
mercial fishing interests, SCUBA operators, and con-
servation groups. In addition, there are a variety of
additional state, county, and municipal agencies in

upstream areas of mainland South Florida whose
land- and water-use policies can strongly in fluence the
Florida Keys, such as the Environmental  Protection
Agency, the Florida Department of Environmental Pro-
tection, the South Florida Water Management District,
and many others (Fig. 1).

The wide variety of threats, management agencies,
and stakeholders make it extremely difficult to effec-
tively prioritize resources for science and manage-
ment. As in many other systems, many scientists work-
ing in the Keys are focused on a single system—either
terrestrial or marine—and many researchers (includ-
ing the authors of the present paper) focus their efforts
on only a few habitats or taxonomic groups. Both per-
sonal and institutional biases are responsible; most
ecologists are trained to study only subsets of systems,
and many funding agencies, especially those responsi-
ble for managing aspects of the Florida Keys, are inter-
ested in questions that address specific management
needs and goals. Requests for proposals with specific
objectives generate narrowly focused research projects
designed to answer specific management questions.

Not surprisingly, most management agencies and
managers are focused on their specific systems as well.
They usually lack sufficient personnel and financial
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Fig. 1. Map of the Florida (FL) Keys, showing management zones and overlapping jurisdictions of multiple state, federal, and local
agencies responsible for management. NP: National Park; RNA: Research Natural Area, a no-take zone within Dry Tortugas NP;
SPAs: Sanctuary Preservation Areas, no-take zones within the Florida Keys National Marine Sanctuary (FKNMS); SFWMD:
South Florida Water Management District, the state agency responsible for water management in the Everglades, Florida Bay, 

and Florida Keys watershed, shown in dark gray on inset map with county boundaries
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resources to address the most pressing and urgent
needs that confront them on a daily basis, let alone to
tackle large-scale threats that originate from outside
their jurisdiction. As a result, a number of problems
remain unmitigated, and even simple steps towards
potential solutions have not been implemented. For
example, fishing pressure remains extremely high in
the Keys, and 24 of 29 species in the snapper–grouper
complex are overfished and/or undergoing overfishing
(Ault et al. 2005), and the small no-take reserves in the
Keys that include only 6% of the hard-bottom habitat
in the Keys (Smith et al. 2011) are too small to recover
these populations. Staff at Biscayne National Park, at
the northern end of the Florida Keys, have been con-
sidering including a no-take fishing zone in the man-
agement plan for over a decade, but have been unable
to implement such a zone (in the National Park) for a
variety of reasons, including resistance from some
stakeholders, overlapping jurisdictions with other agen-
cies, the daily challenges of managing a large marine
park, and the lack of resources for implementation.
Cover of live coral, the primary source of reef accretion
throughout the Keys, has declined precipitously and
remains low throughout the Keys (Donahue et al. 2008,
Dupont et al. 2008), and water quality continues to be a
problem (Lapointe et al. 2004, Keller & Causey 2005).

However, in spite of the many difficulties of con -
ducting comprehensive science and management,
there are positive steps towards integration. The Com-
prehensive Everglades Restoration Plan (CERP; www.
evergladesplan.org) is a large multi-agency project
designed to restore water flow and ecosystem function
to the greater Everglades ecosystem, covering >4.5 mil-
lion ha. It is funded by the state legislature and the
United States Congress, and was designed to be im -
plemented over a 30 yr period. Among its many goals,
CERP explicitly seeks to restore some historical water
flows and reduce nutrient inputs into Florida Bay,
reducing anthropogenic nutrient inputs to the Florida
Keys reef system (Keller & Causey 2005). The National
Science Foundation (NSF) has bolstered related scien-
tific efforts by funding the Florida Coastal Everglades
Long-Term Ecological Research (FCE LTER), a project
that in cludes 72 senior scientists from 31 institutions
(fce.lternet.edu). The FCE LTER examines the connec-
tions between freshwater and marine systems within
the greater Everglades ecosystem and investigates
how anthropogenic disturbance (and restoration) to
this system affects ecological processes. Furthermore,
recognizing the effects of sewage on nearshore marine
ecosystems, municipalities in the Keys are restricting
use of septic tanks. In 1990, there were >25 000 septic
tanks and 9000 cesspits in the Keys. By 2011, 70%
of households are planned to be on a central sewage
system (Sleasman 2009, B. Causey pers. comm.). Imple-

menting these projects required strong communication
and coordination among a diverse group of agencies
from all levels of government, appropriations from the
state and  federal legislatures, and a long-term outlook.

The Florida Keys exemplify many of the issues facing
coastal zone management: diverse threats and chal -
lenges; multiple stakeholders; complex, over lapping ju-
risdictions administered by multiple state and federal
agencies; and a number of scientists and managers
 focusing on individual, disparate aspects of the lar -
ger problem, often with little effective communication
among them. Despite these significant and varied im-
pediments to effectively link science and management
across ecosystems, there are signs of increased collabo-
ration and cooperation across ecosystems and disciplines.

Other areas face similar challenges. The Chesa-
peake Bay, the largest estuary in the USA, is in poor
condition, degraded by habitat loss, overfishing, and
reductions in water quality from changes in land use,
bay habitats, and ecological processes. The watershed
encompasses parts of 6 states and a variety of federal
and state management agencies. One of the most criti-
cal and most difficult issues is runoff; nearly 25% of the
land in the watershed is agricultural, and increased
sedimentation, nutrient inputs, and pollutants from
these operations are extremely difficult to manage
(USGS 2003). A public-private partnership, the Chesea -
peake Bay Program, was created to facilitate commu-
nication and restoration efforts among stakeholders,
but despite progress, the bay remains in poor condition
(Chesapeake Bay Program 2009).

The coastal zones of the Gulf of Mexico have also suf-
fered from habitat loss and a variety of natural and an-
thropogenic impacts. Oxygen minimum zones ap peared
near the mouth of the Mississippi River de cades ago.
These have been linked to anthropogenic activities and
have been increasing in size (Turner et al. 2008). The is-
sues in the Gulf of Mexico are particularly chal lenging
because the Gulf borders 5 states, and the Mississippi
River watershed encompasses >40% of the land area of
the continental United States, making coordinating sci-
ence and management of the downstream coastal sys-
tems extremely difficult (Turner & Rabalais 1991).

In these examples, many of the most daunting chal-
lenges are institutional; multiple institutions are in -
volved from a host of different federal, state, and local
agencies, each with its own set of missions, con-
stituents, and stakeholders. Coordinating and aligning
goals and incentives either horizontally or vertically
becomes an almost impossible task, with the result that
little effective management is achieved (Lafferty &
Hovden 2003). Furthermore, there is little or no legisla-
tion or funding appropriated to provide the legal frame -
work and financial incentives to induce or force differ-
ent institutions to coordinate efforts and align goals.

207



Mar Ecol Prog Ser 434: 203–212, 2011

CONNECTING TERRESTRIAL AND MARINE
SCIENCE FOR COASTAL ZONE MANAGEMENT:

THE SANTA BARBARA CHANNEL AND
 CALIFORNIA COASTAL RESERVES

Like many coastal areas around the globe, the
nearshore coastal ecosystems in California have been
significantly impacted by human activities. California
has lost >90% of its coastal wetlands since European
colonization (California Natural Resources Agency 2010),
once-abundant large fish such as giant sea bass Stere-
olepis gigas have been overfished and are listed as
critically endangered by the IUCN (Cornish 2004, Cal-
ifornia Department of Fish and Game 2010), and many
ecological dynamics in nearshore kelp forests have
been fundamentally changed by human activities (e.g.
Dayton et al. 1998). Because of these issues, scientists
and managers throughout the state have been collabo-
rating across agencies and disciplines to improve coor-
dination in science and management of California’s
coastal zones.

In 2000, the NSF funded the Santa Barbara Coastal
LTER (SBC LTER), designed explicitly to study the con-
nections between, and the effects of, human activities
on terrestrial, estuarine, nearshore, and oceanic eco -
systems (sbc.lternet.edu). A team of >35 academic
investigators from 6 institutions examine the effects of
land-use changes and other human impacts on the
transport of nutrients, sediment, toxicants, and organ-
isms across landscapes and their influences on coastal
and nearshore ocean processes and ecosystems. In
addition, these academic investigators collaborate with
over 10 federal, state, local, and non-profit agencies
and organizations to determine how to use this infor-
mation to guide management and public policy.

Other policy initiatives have successfully integrated
terrestrial and marine science into coastal manage-
ment statewide. As early as 1976, the state of Califor-
nia established the California Coastal Commission, an
independent state agency charged with regulating the
use of both land and water in the coastal zone to ‘pro-
tect, conserve, restore, enhance environmental and
human-based resources of the California coast and
ocean for environmentally sustainable and prudent use
by current and future generations’ (www. coastal. ca.
gov/ whoweare.html). To further strengthen coastal
protection and conservation, the California legislature
passed the Marine Life Protection Act (MLPA) in 1999
(Osmond et al. 2010). This act explicitly recognizes
that ‘coastal development, water pollution, and other
human activities threaten the health of marine habitats
and the biological diversity found in California’s ocean
waters’ (Marine Life Protection Act, 2008; www. dfg.
ca.gov/mlpa/pdfs/revisedmp0108a.pdf), and mandates
the creation of a network of marine protected areas

(MPAs) throughout the state. Furthermore, the act
states that the network of MPAs will be based on sound
scientific guidelines, including biogeography, habitat
representation, and spacing, MPA size and spacing,
water quality, and fishery impacts (California MLPA
Master Plan Science Advisory Team 2011). A public-
private partnership was formed to guide the process,
with funding from state and private sources. The
state was divided into 5 regions, each with a science
advisory team, a regional stakeholders group, and a
statewide interests group. Members in each of these
groups were drawn from a wide range of interests,
industries, and agencies, including recreational and
commercial fishing associations, tour operators, con-
servationists, state, federal, and local agencies, and
academia. As of May 2010, MPAs have been imple-
mented and enforced in 2 of the 5 regions; the process
is underway in 2 additional regions, and will begin in
the final region in 2011 (www.dfg.ca.gov/mlpa/).

A related process to implement MPAs in the Cali -
fornia Channel Islands preceded the MLPA process.
The effort to create MPAs in the Channel Islands was
driven not by legislative mandates as in the MLPA
 process, but instead by local stakeholders with the
involvement of federal and state agencies, guided by
the California Department of Fish and Game (CDFG).
The northern Channel Islands also overlap with the
Channel Islands National Park (administered by the
National Park Service, United States Department of
the Interior), but fishing regulations are set and
enforced by the CDFG. This process resulted in the
creation of a network of MPAs in state waters around
the Channel Islands in 2003, many of which are located
in the Channel Islands National Park (Osmond et al.
2010). The Channel Islands National Marine Sanctu-
ary, which encompasses federal waters around the
northern Channel Islands, was granted the appropriate
 regulatory authority in 2007 and subsequently imple-
mented a series of federal MPAs adjacent to the exist-
ing MPAs in state waters, essentially expanding the
state MPAs. While not without challenges and difficul-
ties, these processes considered the viewpoints of a
wide variety of stakeholders and integrated science
into the planning process; plans succeeded despite the
absence of a legislative framework, in part, because of
the close coordination among stakeholders and the rela -
tively small number of participants (Osmond et al. 2010).

In both the MLPA process and in the Channel
Islands, scientists played a major role in guiding the
discussion to ensure the final plans were scientifically
rigorous. Much of the scientific information included
existing data on distribution and abundance of marine
organisms. The planning process also considered ter-
restrial–coastal–marine connectivity and land-use pat-
terns (more so for the MLPA process, since the Chan-
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nel Islands are mostly uninhabited by humans); many
MLPA reserves have been placed adjacent to existing
terrestrial reserves, where land development and
 terrestrial influences from anthropogenic sources are
likely to be minimized (Gleason et al. 2010). Finally, by
recognizing the importance of nearshore coastal pro-
cesses and the fact that many species use a variety of
habitats, both processes to implement MPAs in the
Channel Islands and throughout the remainder of the
state considered the full suite of available habitats,
from the shoreline to deep water. At the same time,
implementation plans for these new reserves consid-
ered adjacent terrestrial areas, but the process did not
require changes in land use or other terrestrial modifi-
cations for successful implementation of MPAs. There-
fore, no major modifications—or major involvement—
from terrestrial management agencies were required,
which significantly reduced the number of stake -
holders and greatly simplified the process. Efforts to
address other resource management issues that span
marine and terrestrial systems in the state, such as
those to manage the San Francisco Bay delta, have
been less successful, in part because of the complexity
of the problem, the number of stakeholders and agen-
cies involved, and the changes needed in upstream
areas (Gerlak & Heikkila 2006).

KEYS TO SUCCESSFUL INTEGRATION OF
COASTAL ZONE SCIENCE AND MANAGEMENT

Successful and effective coastal zone management
continues to be difficult to implement across the USA
and throughout the world. Despite these challenges,
there are signs of increasing integration across marine
and terrestrial systems and progress in coastal zone
science and management. Multi-agency and multi-
institution research and engineering projects, guided
by state and federal mandates and appropriations, are
underway to restore historical water flow patterns in
the Everglades that will improve Florida Bay and
Florida Keys ecosystems. Transparent, inclusive MPA
planning processes, often guided by legislation, have
led to the implementation of science-based networks of
MPAs that account for land use in California, and
large-scale research projects are underway that are
explicitly designed to study the impacts of terrestrial
inputs and land use on nearshore coastal eco logy. In
Puget Sound, the state of Washington created the
Puget Sound Partnership, a state agency tasked with
overseeing management and restoration efforts in
Puget Sound, including coordinating the scientific
research needed to guide the process (Puget Sound
Partnership 2010). The scientific priorities explicitly
include tracing the sources and effects of terrestrial

inputs in this heavily urbanized watershed, and man-
agement priorities include the ultimate goals of miti-
gating these impacts. In SW Puerto Rico, changes in
Gúanica Bay and its associated watersheds have led to
significant declines in water quality and the condition
of nearshore reefs. To restore the historical functions of
the watershed and bay, a series of major multi-year
projects were initiated in 2009 by the NOAA and
United States Department of Agriculture in response to
a watershed management plan (Center for Watershed
Protection 2008). These projects include restoration of
drained freshwater lagoons and planned reductions in
runoff and sedimentation into the bay from upstream
agriculture. If successful, it will serve as an excellent
model for conducting effective coastal zone manage-
ment across linked marine–terrestrial systems.

Other agencies have also begun to recognize the
importance of science and management in linked
marine–terrestrial systems. The NSF funds a biocom-
plexity program entitled ‘Dynamics of Coupled Natural
and Human Systems’, which seeks to fund research
projects that include anthropogenic effects on biologi-
cal systems. The NOAA’s Coral Reef Conservation Pro-
gram has identified 3 primary threats to coral reef
ecosystems, one of which is land-based sources of pol-
lution. This program devotes a significant amount of its
funding to projects that study or mitigate land-based
sources of pollution, including comprehensive water-
shed management plans. In addition, the Interagency
Ocean Policy Task Force recently released a report
recommending that the United States government
develop a framework for comprehensive coastal and
marine spatial planning (Anon 2010). These recom-
mendations, adopted by the United States govern-
ment, include considerations of terrestrial inputs to
marine systems, and the entire process is to utilize
 science-based information in all decision-making.

However, despite some successes and an increased
recognition of the importance of coastal ecosystems
and the marine and terrestrial systems that affect them,
enormous challenges remain. To continue moving sci-
ence and management towards better integration, we
make a number of recommendations to management
agencies and scientists.

Recommendations to the agencies:
(1) Consider a system as a whole, including pro-

cesses occurring in upstream terrestrial areas and
impacts in downstream coastal zones, using ecosys-
tem-based approaches. Watersheds and activities oc -
curring on land upstream of coastal systems will affect
downstream areas, and in many cases it will be im -
possible to effectively manage coastal systems without
both understanding and managing terrestrial inputs.

(2) Governance. Provide legislative frameworks,
man dates, and appropriations by using legislation or
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agency rule-making to create the needed legal guide-
lines to improve coordination, including linking fund-
ing to meaningful progress. The more complex a man-
agement situation, the more critical legislation is to
make positive progress.

(3) Interagency communication. Maintain clear,
open, and frequent communication among agencies
and across management levels, particularly with
respect to management goals. Create incentives to
encourage interagency collaboration, including intera-
gency working groups and task forces.

(4) Align management goals. Different agencies will
act together most effectively when their individual
goals match. If goals do not match, seek to modify them
or seek more restricted common areas where small
amounts of progress are possible.

(5) Transparency and participatory processes. Reg-
ulatory processes must be transparent and inclusive to
keep stakeholders involved and supportive. At the
same time, reducing the number of organizations
involved may increase the likelihood of consensus.

(6) Include the best science, and allow scientists to
help guide the process. Science can make compelling
and defensible arguments as to why action is needed
and what impact it will have. The resource manage -
ment process will not be successful without policy
grounded in solid science, and solid scientific informa-
tion can be used to motivate both public opinion and
legislators.

Recommendations to the science community:
(1) Think broadly and holistically. Consider how a

particular study system might influence and be
affected by other systems, and incorporate ideas from
the literature on other systems.

(2) Talk to and collaborate with colleagues from
other disciplines. Different ideas can inspire new per-
spectives and novel approaches to questions; many
 scientists pay lip-service to this idea, but few follow
through in practice.

(3) Consider large-scale inclusive projects that span
systems and disciplines. Projects such as NSF-funded
LTER programs and Dynamics of Coupled Natural and
Human Systems are necessary, important, and fund-
able, as are multi-disciplinary data synthesis projects.

(4) Communicate with managers and policymakers,
not just other scientists. Most managers want to know
more about how the systems for which they are respon-
sible function, and often welcome such input when
presented objectively.

(5) Science can support and guide management.
Collaborations among scientists from different disci-
plines can facilitate more holistic management. Scien-
tists can also influence and guide bottom-up policy
processes through integrated research and appropriate
presentation of findings, and ultimately influence the

creation and direction of top-down (e.g. legislated or
agency rule) management processes.

Ultimately, environmental scientists must get in -
volved and take a leadership role in driving the search
for solutions to the various ‘wicked’ coastal environ-
mental problems. In many cases, managers are so lim-
ited in time and resources that they are unable to
approach problems as broadly and comprehensively as
needed. These limitations are often compounded by
institutional constraints imposed by multiple overlap-
ping agencies or limited managerial or jurisdictional
authority. Scientists, on the other hand, are often free
from some of these constraints, and have a responsibil-
ity to study problems objectively, ask compelling ques-
tions, and provide evidence that managers need to
effect change. Collaborative research that crosses dis-
ciplinary and marine–terrestrial boundaries can high-
light new issues and approaches. Advancing coastal
zone science can guide coastal management, resulting
in a better understanding of coastal systems and better
stewardship of their resources.
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