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Abstract—As the world explores opportunities to develop
offshore renewable energy capacity, there will be a growing need
for pre-construction biological surveys and post-construction
monitoring in the challenging marine environment. Underwater
video is a powerful tool to facilitate such surveys, but the inter-
pretation of the imagery is costly and time-consuming. Emerging
technologies have improved automated analysis of underwater
video, but these technologies are not yet accurate or accessible
enough for widespread adoption in the scientific community or
industries that might benefit from these tools. To address these
challenges, we developed a website that allows us to: (1) Quickly
play and annotate underwater videos, (2) Create a short tracking
video for each annotation that shows how an annotated concept
moves in time, (3) Verify the accuracy of existing annotations
and tracking videos, (4) Create a neural network model from
existing annotations, and (5) Automatically annotate unwatched
videos using a model that was previously created. The website
was seeded with 50 hours of high-resolution underwater videos
that were generously provided by the Monterey Bay Aquarium
Research Institute (MBARI). The biology students that were part
of the project created more than 30,000 annotations that range
over more than 20 concepts. About 3,000 of these annotations
were then verified for accuracy by our marine biology experts.
Using both validated and unvalidated annotations and automat-
ically generated annotations from trackings, our software was
able to count the number of Rathbunaster californicus (starfish)
and Strongylocentrotus fragilis (sea urchin) with count accuracy
of 97% and 99%, respectively, and F1 score accuracy of 0.90
and 0.81, respectively.

I. INTRODUCTION

MBARI and other deep-sea exploration organizations collect

thousands of deep-sea underwater videos every day. Usually,

this data is collected by Unmanned Underwater Vehicles

(UUVs) that cross the ocean floors daily. Unfortunately,

annotating these videos by a human is a very costly and

lengthy process. For example, it took us about 600 hours

of student annotations to annotate just 30 hours of videos.

Therefore, the problem we are trying to solve is how to

automate the annotation task. This includes creating tools for

fast video annotations by humans and tools for automatic

video annotations once a model has been trained. We also

included tools to track the accuracy of human annotations and

computer-generated annotations (via validation sets).
The huge backlog of underwater videos that are not an-

notated requires a new approach. One that allows marine

biologists to annotate videos from anywhere using a web

browser through a user-friendly interface. Once enough videos

have been annotated, our approach also allows for automatic

video annotation. This can be beneficial not only for deep-sea

pre-construction and post-construction surveys, but also for

a range of applications, such as analyzing drone videos for

marine life or using stationary videos to analyze the effect of

human-made artifacts, such as a desalination plants, on marine

life [1].

Organizations that explore underwater marine life are strug-

gling to annotate all their videos. The reason is that cur-

rent tools (e.g., [2]) are slow, not versatile, and not much

automation is possible. What makes the problem even more

challenging is that a single frame may not be sufficient to

identify a concept. For example, the angle of the camera

or the distance to the object may make recognition hard

or impossible. Moreover, additional information, such as the

depth of the video or the pattern of movement may be required

in order to make a correct identification. This is why our

tool allows annotators to see a short video (six seconds or

shorter) around the annotation point, called a tracking video,

which includes a bounding box around the objects of interest.

Moreover, our machine learning tool examines these tracking

videos when identifying a concept in order to increase the

accuracy of the algorithm. Another problem that we faced is

that it is difficult to develop a web application that correctly

identifies the frame in the video where an annotation is made.

We believe that this may be related to the way the video is

compressed and displayed by JavaScript. In order to fix this

problem, we had to match the currently displayed frame in the

web browser to the frames in the video around the annotation

time in order to identify the correct frame.

There are many reasons why a comprehensive web-based

deep-sea annotation tool with good automatic annotation ca-

pabilities has not been previously developed. First, this a niche

area with limited funding. Second, the hardware (e.g., graphic

processing units (s)) and good object detection algorithms,

such as R-CNN [3], fast R-CNN [4], faster R-CNN [5], Yolo

[6], and RetinaNet [7], have only recently been developed.

We were lucky enough to receive a $200,000 grand from the

California Energy Commission [8] and $50,000 in Amazon

Web Services (AWS) credit. We used this money to develop

a comprehensive website with good automatic annotation

17

2020 IEEE 14th International Conference on Semantic Computing (ICSC)

978-1-7281-6332-1/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSC.2020.00010

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 05,2023 at 20:32:58 UTC from IEEE Xplore.  Restrictions apply. 



capabilities. Fourteen students and two faculties at California

Polytechnic State University (Cal Poly) have worked on the

project for about 18 months to develop the software tool. We

utilized the AWS credits to deploy powerful instances with 4

GPUs and 64 virtual CPUs and state-of-the-art convolutional

neural network models, such as RetinaNet.

When using our website, the user first selects the concepts

of interest. They chose from a hierarchy of more than 2,000

underwater species. Next, they can select the video they

want to annotate, watch it, stop it at any point and create

bounding boxes around objects of interest and tag them with

the appropriate concept name. Our software supports four lists

of videos: “My In Progress Videos”, which keeps track of the

videos that are currently annotated by the user, “Unwatched

videos”, which contain no annotations, “Annotated Videos”,

which have been fully annotated, and “In progress videos”,

which are currently being annotated by someone. We use the

Kernelized Correlation Filter algorithm [9] to create additional

annotations from tracking the object that is being annotated.

Our verification tab allows the user to verify the validity of

both user-created and tracking annotations in a collection of

annotations. Our reporting tab can show annotations sorted

by video, concept, or user, where there are additional options

to show only verified annotations or annotations that are

marked as unsure. Tracking annotations are not displayed in

the reporting tool. Finally, the models tab allows the user to

create and train a model and use a model on an unwatched

video to automatically annotate it. We use the RetinaNet [7]

convolutional neural network as our annotation algorithm,

where the initial weights are based on the COCO dataset [10].

In what follows, in Section II we go over related research.

The main contributions of the paper are in the next three

sections. In Section III, we describe the functionality of our

website and the workflow of how to use it. In Section IV, we

examine the technical details of how we built the website. This

includes a novel algorithm for correctly assigning the category

of a concept based on multiple frames of tracking the concept

with a bounding box. Our experimental results are presented

in Section V, while the summary and areas for future research

are shown in Section VI.

II. RELATED RESEARCH

As [11] described, there is a trade-off between the accuracy

and the speed of an object detection algorithm. One of the

first highly successful algorithm to use convolutional neural

networks was regional convolutional neural networks (R-

CNN). It is a two-pass algorithm, where the first pass identifies

about 2,000 regions of interest in the image using selective
search [12] and the second pass transforms each region into

a rectangle and then classifies it using a convolutional neural

network (CNN). However, training and inference was slow.

Two improvements: Fast R-CNN [4] and Faster R-CNN [5]

were introduced later. Fast R-CNN speeds up the process

by first using a CNN to generate a feature map. Then, the

selective search algorithm works with the feature map instead

of pixels from the image, which speeds up the process. Faster

R-CNN eliminates the need for the selective search algorithm

all together by using a convolutional neural network to select

the objects of interest. An extension of Faster R-CNN is Mask

R-CNN [13], which is able to segment the objects in the image.

This means that instead of bounding boxes, the algorithm

detects the precise curved boundary of each object inside the

image.

An alternative approach to object detection is using a feed-

forward network in a single pass. Such algorithms include

You Only Look Once (YOLO) [6] and Single Shot Detection
(SSD) [14]. The algorithms split the input image into grids and

explores different bounding boxes in each grid cell. Although

these approaches are very fast, the accuracy is not at good as

the two-stage methods, such as Faster R-CNN.

Recently, the RetinaNet algorithm [7] was published. Al-

though it is a one-stage convolutional neural network algo-

rithm, it is able to achieve accuracy that is comparable with

two-stage algorithms, such as Faster R-CNN. The algorithm

addresses class imbalance during training by using a new focal

loss function.

For our website, we experimented with Faster R-CNN,

YOLO, and RetinaNet. As expected, using RetinaNet we got

reasonable training times (e.g., about four hours to train the

network on a single concept) and good accuracy. Faster R-

CNN and YOLO were slower and the accuracy numbers were

not as good.

There is great utility for our approach in the marine sci-

ences because many marine research projects utilizes video

or imagery. Some projects that use still images have begun to

employ machine learning to automate the task of identification

of plankton [15], megafauna, such as sharks and whales [16],

[17], birds [18], and even corals [19], but few projects have

been successful in applying these approaches to video. There

is a wide range of marine research and monitoring projects

that use videos, including measuring the size structure of

fishes [20], evaluating the impacts of fishery closures on target

populations [21], monitoring and evaluating human impacts

in deep-sea ecosystems [22], [23], [24], surveying pelagic

ecosystems [25], and tracking biodiversity [26], among many

others. The videos that are generated require a great deal of

time to process, which adds cost, slows data analysis, and

limits the data that researchers can extract and analyze, all

of which reduces the potential impact the data can have on

our understanding and managing of ecosystems. While we are

developing this tool for a single, specific project, the potential

applications of this tool across marine science and any other

discipline that collects video data are wide and varied.

III. OUR WEBSITE

We built our website on AWS using nodeJS and React.

We used PostgreSQL as our database back-end. The location

of our website is www.deepseaannotations.com.

The website is password protected because the videos

are property of MBARI and cannot be shown without

their permission. The software is developed under

Apache license and it can be downloaded from:
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github.com/video-annotation-project. The

website has six tabs: Concepts, Collections, Annotate, Report,

Model, and Account, which we cover next.

A. Concepts Tab

The concepts tab allows us to select the concepts of interest.

The concepts are displayed in a tree hierarchy, where there is

an image associated with each concept. These hierarchy cor-

responds to the taxonomic hierarchy of marine-life organisms.

The concept tree is initially populated from a JSON file. The

user can navigate the tree or directly type the name of the

concept. There is no limitation to the number of concepts that

can be selected. All selected concepts are put in the user’s

concept bag.

B. Collections Tab

The Collections tab has three sub-tabs: Annotations, Con-

cepts, and Videos. The Annotation Collection sub-tab allows

the user to create a collection of annotations or add annotations

to an existing collection. First, users, videos, and concepts

are selected. Next, all annotations from these selections are

displayed. As expected, there is an option to choose all users,

all videos, or all concepts. For videos and concepts, there is

also the option to select from an existing video collection or

concept collection, respectively. Once the user has described

the annotation collection based to the annotators, videos, and

concepts, they have the option to select whether to include

annotations from tracking to the collection. On average, we

store about 55 tracking annotations (about three seconds of

tracking video) for each user annotation. Annotation collec-

tions are used when working with models. For example, we

can use an annotation collection to train a model. Similarly,

when the software makes predictions on a video, the result is

stored in an annotation collection.

The Concept Collection sub-tab allows the user to create

custom collections of concepts. The user can only select

concepts from their concept bag that is created through the

Concept tab. If the user wants to add a concept that is not part

of their concept bag to a collection, then the concept needs

to be first added to the concept bag. Concept collections are

useful when creating annotation collections.

Lastly, the Video Collection sub-tab allows the user to create

collections of videos. When the user is adding a video to a

collection, they are allowed to play the video and see video

information. Video information includes the start/end time

of the video, the start and end depth in meters, the video

description, summary of the concepts that were annotated in

the video, and the density of the concepts in the video (e.g.,

how many sea stars can be seen in the video per kilometer).

We found this sub-tab useful because we had different sets of

videos: for example, videos that are high quality, videos that

contain the species that we are interested in, and so on.

C. Annotate Tab

The Annotate tab has two sub-tabs: Videos and Verify. The

Videos sub-tab is used to annotated videos. It has the capability

of playing a video at different speeds, stopping a video, and

annotating objects in the video using rectangular bounding

boxes. The software allows to only annotate species that are

in the concept basket, but it also allows the user to quickly

add new concepts to the concept basket. When an annotation

is performed, the user has the option to add a comment to

the annotation or mark it as uncertain so that it can be later

reviewed by a different annotator. The tool keeps track of

which videos are currently being annotated and which videos

have already been annotated. This allows annotators to choose

to work on new videos that have not been previously annotated

and the website gives a warning when multiple annotators try

to annotate the same video.

The Verify sub-tab is used to verify an existing collection of

annotations. The user can select whether to include annotations

from tracking and whether to verify tracking videos. The

annotations from the collection are shown to the user one

by one. The user has the option to move the bounding box,

change the label of the annotated concept, or even create a

new annotation. For each frame, all available annotations are

displayed. This includes annotations outside the annotation

collection. The reason is that we want to make sure that all

frames that are used as input to a model contain all relevant

annotations. Four colors are used to display the different

bounding boxes – see Figure 1. Red is used to display the

annotation that we are hovering over with the mouse. This

includes the option to delete the annotation. Green is used

for annotations that are already verified and are part of the

collection. Blue is used for annotations that are outside the

set of concepts for the annotation collection. Finally, orange

is used for the current bounding box. The tool also contains the

option to jump between an annotation and the corresponding

tracking video. It is recommended that an annotation collection

is verified by a human for accuracy before it is used to train

a neural network model.

D. Report Tab

The report tab shows all annotations, verified only annota-

tions, or unsure annotations sorted by video, concept, and/or

annotator. The result is shown in a tree that can be expended

or collapsed. Once an annotation is displayed, the user has the

option to modify it, delete it, or watch the tracking video that is

associated with the annotation. This tab can be used to examine

the work that is done by the different annotators because it

shows counts relative to the chosen sorting order. Alternatively,

if the result is sorted by concept, then we can see the total

number of annotations for each concept (see Figure 2). This

tab is also useful as a learning tool because it can display all

the annotations with trackings for each concept. The similarity

between this tab and the verify tab are obvious: both tabs can

be used to view and change annotations. However, the verify

tab shows the annotations one at a time and its main purpose is

to double-check our work. Conversely, the report tab is useful

not only to examine individual annotations, but also see a

summary of the annotation count by concept, annotator, or

video (similar to the cube operator in relational databases).
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Fig. 1. The Verify sub-tab.

E. The Model Tab

The model tab shows all available models. There is a “+”

in the top right of the tab that can be used to create a new

model. If pressed, a new popup window opens where the user

types the model name, the concepts that are part of the model

(directly specified, or specified using a concept collection)

and the verification videos. The verification videos must be

videos that are fully annotated and that contains some of the

model’s concepts. The verification videos must be different

from the videos that were used to train the model. The videos

can be chosen from a list or an existing video collection can be

selected. After a model is trained, the verification videos are

used to verify the accuracy. For example, for each concept of

the model, the following values are calculated: the number

of true positives, the number of false negatives, precision,

recall, F1 score, the number of predicted concepts, the ground

truth number of concepts as annotated by users, and the count

accuracy. These numbers are used to access the quality of the

model and guide the user if additional training data is needed.

For each model, there is a “train” button that creates a

new version of the model. The initial weights are based on

the COCO dataset [10]. Once the button is pressed, a new

popup window appears that asks for the name of the annotation

collection, the number of epochs to train, and the number

of images to use. Note that the annotations that are used

for training cannot be from the verification videos. Next, the

button is changed to “training”. If the “training” button is

pressed, information about the training (e.g., current epoch

for the training stage or video being annotated and percent

progress for the verification stage). Once the training has

finished, a new version appears under the model. The web

page displays tree of versions for each model. For example,

Version 2.3 is the third version that is created from the second

version of the model.

Each model version has a “predict” button that allows us to

use the trained model version to annotate a new video. The

result of running “predict” is generating automatic annotations

on the new unwatched video and a new computer-annotated

video that shows the annotated concepts with bounding boxes

throughout the video. There is also a “video” button for each

model version that shows the videos that are generated for

the specific model version. Annotated videos are generated

for each of the verification videos. The annotated video shows

the annotated concepts with bounding boxes from the moment

they appear in the video to the moment they disappear from

the video with the label of the concept and confidence that the

prediction is correct. Note that for each concept appearance,

only a single annotation is generated and the rest of the anno-

tations in the annotated video are generated using the tracking

algorithm [9]. More details on how the annotation videos and

the automatic annotations are generated are presented in the

next section.

An information button is also associated with each model

version. When pressed, we can see the precision, accuracy, F1

score, and count accuracy of each concept on the verification

videos. If these numbers are good, then we can assume that our

model is good. If they are not, then we have two options. First,

we can verify the output annotations of the model using the

20

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 05,2023 at 20:32:58 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. The Report tab shows the top concepts relative to number of
annotations.

verify sub-tab. Then, we can retrain the model with the verified

annotations. In the spirit of reinforcement learning (e.g., [27],

[28]), corrected annotations are given a greater weight when

creating the new model version. The second option would be

to create a new model version by training the existing weights

using an additional annotation collection.

F. Account Tab

Lastly, the account tab has three sub-tabs: Profile, Create

Users, and Users. The Profile tab allows the user to change

the current password. The Create User tab allows us to create a

new user, which can be an annotator or an admin. Only admin

users have access to some of the functionality, such as training

models. Lastly, the Users tab can be used to monitor the work

of the annotators. Specifically, it can show the number of

annotations for each user, concept, and time period.

G. Workflow

A rough overview of the website workflow is shown in

Figure 3. We have used a double rectangle to denote the

terminal state of the workflow. First, the annotators will select

the concepts that they care about in their concept basket.

Next, they will annotate multiple videos with the selected

concepts. One or more senior annotators can then validate

the annotations for accuracy and make sure that there are no

mistakes or omissions in the annotated frames. The next step is

to create a model with the important concepts and train it using

part of the created annotations. Note that one or more videos

annotate videos

verify annotations create new model

to annotate new videos
 use the model version verify computer

   annotations

accuracy is good

select concepts

create new model 
         version

no

possibly add new annotations

yes

Fig. 3. Website workflow.

must be designated as verification videos and annotations

from these videos should not be used for training the model.

Once the first model version is produced, the user will check

the accuracy against the verification videos. This accuracy

can me measured as the F1 score or the count accuracy for

the different concepts. If this accuracy is satisfactory, then

we have built a good model version and we can use it to

automatically annotate new videos. If it is not satisfactory, then

we can manually verify the computer-generated annotations

and possibly add new annotations to the model. We have also

found that watching the computer-generated annotated video

is an efficient way to “debug” the model version and determine

witch concepts have been incorrectly labeled. Providing more

annotations for these concepts usually leads to improvement

in accuracy.

IV. WEBSITE INTERNALS

The heart of our website is the algorithm that creates

the computer annotations. It is shown in Algorithm 1. The

input to the algorithm is a trained model (i.e., a CNN with

trained weights) and an unwatched video. The model is trained

on a concept collection using an annotation collection. The

algorithm produces a set of annotations. An annotation is

characterized by the frame ID, bounding box (x, y pixel

coordinates of the top left and bottom right corner), object

ID, concept ID, and confidence. The concept ID identifies the

concept in the video, while a new object ID is created for each

occurrence of a concept in the video. For example, if a starfish

appears in the video and then it disappears after few frames,

than this is one occurrence of the concept and it is assigned

a unique object ID. Our algorithm also maintains an array

of current trackings. For each tracking, we store the concept

name of the object that is being tracked, a unique object ID, the

the bounding box for each fame, and the computer generated

annotation for each 10th frame (this was chosen to make the

algorithm faster). The goal of the tracking array is ensure that

all annotations from the same tracking are tagged with the
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same concept ID.

Algorithm 1: create_computer_annotations
Data: video, model
Result: annotations

1 annotations ← []
2 trackings ← []
3 for frame ∈ video.getFrames() do
4 for tracking ∈ trackings do
5 if the object in tracking is present in

frame then
6 tracking.addFrame(frame)

7 end
8 else
9 remove tracking from trackings

10 end
11 end
12 if frame.getNumber() % 10 = 0 then
13 mAnn ←

model.getAnnotations(frame)
14 update(mAnn,trackings,frame)
15 annotations ← annotations ∪ mAnn
16 end
17 end
18 return calibrate(annotations)

Algorithm 1 starts by initializing the array of annotations

and trackings as empty arrays (Lines 1-2). Next, our algorithm

performs a one-pass scan of all the frames in the videos

(Line 3). This implies that the algorithm is linear and relatively

fast. In practice, it takes about 30 minutes to automatically

annotate a 15-minute video. Next, we iterate through all our

current trackings (Line 4) and check if tracking extends to the

current frame (Line 5). If this is the case, then we add the

current frame to the tracking (Line 6). Otherwise, the tracking

has ended and accordingly we remove it from the list of current

trackings (Line 9). In order to make the algorithm fast, we

only annotate every 10th frame (Line 12). The mAnn variable

stores all the annotation for the current frame (Line 13).

Line 14 updates the tracking data using these annotations,

while Line 15 adds the computer generated annotations to the

set of annotations. Lastly, Line 18 calibrates the annotations by

picking the concept with the highest average confidence among

each tracking and then tagging all the annotations along the

tracking with this concept.

The create_computer_annotations method calls

two auxiliary methods. The first one is the update method,

which updates the tracking data. The method is called with the

frame number and all the computer annotations and tracking

data for the frame. We first iterate over all the annotations

(Line 1) and check if there is an overlap between the bounding

box of an existing tracking and a computer annotation. We

consider two bounding boxes overlapping if the overlap area

is more than 20%. Line 4 updates the annotation with the

ID of the object that is being tracked, while Line 5 add the

Algorithm 2: update
Data: annotations,trackings,frame
Result: Updates trackings

1 for annotation ∈ annotations do
2 if annotation.getBoundingBox() overlaps

with tracking.getBoundingBox(frame)
for some tracking in trackings then

3 objectID ← tracking.getObjectID()
4 annotation.objectID ← objectID
5 tracking.addAnnotation(annotation)
6 end
7 else
8 tracking ← new tracking starting at

frame and bounding from annotation
9 tracking.addAnnotation(annotation)

10 annotation.objectID ←
tracking.objectID

11 trackings ← trackings ∪ tracking
12 end
13 end
14 for tracking ∈ trackings do
15 if tracking.getBoundingBox(frame) does

not overlaps with some annotation in
annotations and there has not been a match
for the last 30 frames then

16 remove tracking from trackings
17 end
18 end

annotation to the tracking. Line 7 covers the case when there

is an an object that is recognized by the prediction algorithm

in the current frame, but there is no tracking for it. In this

case, Line 8 creates a new tracking for this object. Note that

this automatically generates a new object ID. Line 9 adds the

annotation to the tracking. Lines 10 sets the object ID for the

annotation to the ID of the object that is being tracked. Line 11

adds the tracking to the set of current trackings. Lines 14-

18 cover the case when we keep tracking an object for 30

frames without the object being recognized by the prediction

software. In this case, we are assuming that the object that is

being tracked is no longer recognized and therefore we stop

tracking it.

Lastly, the calibrate method reassigns the concept

labels of the computer-generated annotations. In particular, the

method first finds all annotations that trace an object (Lines 1-

2). We then find the average confidence for each concept in

the tracking, pick the concept that has the highest confidence

(Line 4), and use this concept to relabel the annotations

along the tracking (Line 5). For example, if along a tracking

the machine-learning algorithm recognizes a concept A with

confidence 0.2, a concept B with confidence 0.3 and then

a concept A with confidence 0.5, then we will relabel all

concepts as A because the average confidence for A is 0.35,

while the average confidence for B is 0.3. Note that in our
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Algorithm 3: calibrate
Data: annotations
Result: calibrated annotations

1 for objectID ∈
annotations.getObjectIDs() do

2 nAnnotations ← all annotations with

objectID
3 find average confidence for each concept in

nAnnotations
4 conceptID ← concept with highest average

confidence

5 change the conceptID of all annotations in

nAnnotations to conceptID
6 end
7 return annotations

database we store only the annotation in the middle for each

tracking, while the the other annotations are derived using the

Kernelized Correlation Filter tracking algorithm.

V. EXPERIMENTAL EVALUATION

A. Training Process

Our training script runs on a AWS EC2. Specifically, we

used a g3.16xlarge, which has 4 NVIDIA Tesla M60 GPUs

(32 Gbs GPU memory). The model trains on information a

user selects: epochs, annotation collection, and number of

training images. We use a custom image generator, which

feeds our model. Our generator downloads multiple images at

a time. The generator checks if the image exists in our training

server, and when the image is not found, it downloads it from

our S3 bucket. Once there are enough images for a batch,

our model starts training. While training on the first batch,

the generator continues to prepare images for the next batch.

Parallelizing image retrieval, checking existing images, and

training immediately made the process run fast.

B. Validation

We compute a model’s accuracy on a set of verification

videos. Those are videos that are not used to train the model.

After each training job, all verification videos are run against

the model, and compared with user annotations. If a bounding

box in the model overlaps with a user’s box by 20% or more,

then this a true positive (TP), otherwise it is a false positive

(FP). If our model does not place a box that overlaps with a

user’s box, then this is a false negative (FN). We use these

numbers to calculate precision (P), recall (R), and F1 score.

P =
TP

TP + FP
R =

TP

TP + FN
F1 =

2 · P ·R
P +R

Finally, we take the number of human annotations (user-
Count) and compare it with the number of objects our model

(modelCount) detected for each species.

count accuracy = 1− |modelCount− userCount|
max(userCount,modelCount)

This gives us an idea of how well our model is doing,

without the need to watch the video ourselves. For further

investigation, we also generate the verification video with both

human and model annotations.

C. Experiments

Our team was interested in comparing two settings for

training a model:

1) User annotations only and

2) User annotations and tracking annotations.

We used 5,000 random annotations of each concept from the

collection, 1280x720 images, a batch size of eight, and three

epochs for each training session. A session took on average

two hours to train the model. Each model was trained twice.

The current standard is to train on only human annotations.

This setting requires a lot of work from biologists, but the

annotations are more consistent and accurate than tracking an-

notations. The second setting adds tracking annotations to the

set. For each user annotation, the tracking algorithm generates,

on average, 55 additional annotations. So, on average, we have

access to 55 times more annotations than the first setting.

D. Experimental Results

Tables I and II show the results from the two settings on

a verification video. The first setting, trained on only user

annotations, does very well on identifying starfish, but not on

the sea urchin. After inspecting our user’s annotations, the

starfish frames were annotated very well. They are big, easy

to capture, and do not appear in clusters. The sea urchin is the

opposite. A single biologist is easily overwhelmed, and can

miss them. Our tracking algorithm generates annotations on

every frame, so the biologist does not need to do so. With the

addition of these annotations in our collection, we were able

to reach very high count accuracy on both (over 95%).

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we outlined our work on the Deep-Sea

Annotations project. We created a website that can be used to

perform human annotations, human verification of annotations,

and computer annotations of deep-sea videos. We showed

the usability of the website by using it to create more than

30,000 annotations and then verify about 3,000 of them. The

experimental results show that our approach is promising

because our algorithm was able to determine the density of

both sea urchins and starfish with very small count error.

One area of future research is to allow our algorithm to

classify objects in a hierarchical way. For example, if our

algorithm is not sure about the type of sea pan that is displayed

in a bounding box (e.g., funiculina vs funiculina-Halipteris
complex), then it can just use the funiculinidae label, which is

the name of the super concept, to classify an object.
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TABLE I
ACCURACY RESULTS ON VIDEO 86: TRAINED ON 5,000 USER ANNOTATIONS ONLY

Species Name TP FP FN P R F1 model count user count count
accuracy

Rathbunaster californicus 134 11 9 0.924 0.937 0.931 145 145 100%

Strongylocentrotus cf. fragilis 77 12 35 0.865 0.688 0.766 89 140 63.6%

TABLE II
ACCURACY RESULTS ON VIDEO 86: 5,000 USER & TRACKING ANNOTATIONS

Species Name TP FP FN P R F1 model count user count count
accuracy

Rathbunaster californicus 126 14 13 0.900 0.906 0.903 140 145 96.6%

Strongylocentrotus cf. fragilis 109 30 21 0.784 0.838 0.810 139 140 99.3%
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